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SECTION I

INTIRODUCTION

The use of theory to obtain collision cross sections from electron transport data, one

of the "inverse problems" of physics, was pioneered by Townsend and by Ramsauer in the

1920's. The method used in such early analyses involved measuring the drift velocity of

electrons in a gas as a function of E/p (electric field streiigth divided by gas pressure) and

inverting the integral relating the drift velocity and the momentum transfer cross section

using an approximate expression for the energy distribution of the electrons. This

technique has increased in sophistication over the years. In the 1960's Phelps and various

collaborators applied electronic computation to the problem and developed algorithms for

solving the Boltzmann equation for transport of electrons in a weakly ionized plasma to

obtain an accurate electron energy distribution function valid at higher fields and in the

presence of inelastic and, even, superelastic collisions. This began an era that has given us

very accurate momentum transfer and lower energy (rotational and vibrational) inelastic

cross sections that have been derived from measurements of the drift and diffusion of

electrons in gases. This methodology is reviewed in Refs. [1-4]. This has become an

increasingly active field in recent years due, for example, to the desire for cross sectional

data on molecules such as CH 4 , CF 4, SF6 , Sill4 , and SiF 4 that are used in semiconductor

plasma processing and in switching applications.

Clearly the iterative process of choosing energy dependences of test cross sections;

solving the Boltzmann equation for a range of values of electric field; computing transport

coefficients; comparing to measured values; revising the test cross sections; etc. is very

labor intensive and "hands on." It is obviously a process where the experience of the

researcher plays an important role comparable to that of the specific computational

techniques used. The object of the research being reported on here is to evaluate several

computational methods for reducing the labor involved in this deconvolution process.
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SECTION II

BOLTZMANN'S EQUATION AND ELECTRON SWARMS

The pertinent equations in this problem are the electron Boltzmann equation and its

energy integral, which relates the various transport coefficients for electrons in a gas. We

can see how the various aspects of this problem are related to each other by examining the

so called two-term expansion of the Boltzmann equation and the various electron transport

coefficients. If we take the general form for the Boltzmann equation,

(a/at + v.Vr + -e.Vv)f(r,v,t) = (Of/8)collisions

neglect spatial and temporal dependence of the distribution function f(r,v,t), and express

f=f(v) as the first two terms of a spherical harmonic expansion, that is

f(v) = f0(v) + V.fl(v)

then we obtain the following scalar equation for f0 (c) (where c=mv2 /2):

1 (eE/N)2 d/d{I/am dfo/dc} + d/dE{(2mam/M)f 2 [fo() + kT dfo/dc]}

+ [(c+(i)ai(f+i)f 0 (f+i) - (a0i(()fo(f)I = 0 (1)iII

Here we have assumed that the populations of the excited levels, laL led by i, are small

enough that superelastic collisions and transitions among excited states are unimportant.

The electron impact cross sections involved are am, the momentum transfer cross section,

and {i , the set of cross sections for transitions from the ground state to the various

excited states {i}. This equation does a remarkably good job of describing the transport of

electrons under the influence of an electric field in most gases.
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The Boltzmann equation, via the probability density function f0 (c), is a microscopic

description of the behavior of electrons in a gas. We need to relate f0 (c) to some

macroscopic quantities that can be measured. This is oone by performing an energy

integral of (1), which gives the following:

vd E/N - v2e/m>c2 (2m/M)om(c)[fO(c)+kTdfo/dc]dc

-- iki (2)
ii

The drift velocity times the electric field divided by the gas number density is the power

input; the second term is the power lost due to elastic collisions (which is reduced by

recoil); and the RHS of the equation is the power lost due to inelastic collisions. The drift

velocity, vd, and the elastic collision term contain the momentum transfer cross section,

while all the terms involve integrals over the electron energy distribution function, f0 (C),

iiself a function of the cross sections. The two most commonly measured transport

coefficients are the drift velocity, vd, and the tranverse diffusion coefficient, DT, which are

related to f0 (f) and the momentum transfer cross section, om(c) by the following:

Vd % f[am(()I-l(df0/df)cdc and DT f [am()I-l f0(€)cde

We see that the drift velocity and diffusion coefficent sample different aspects of f(c) and,

hence, represent two somewhat independent pieces of information. Generally the quantity

DT/I1, the characteristic energy, is reported in the literature, rather than DT itself. For a

Maxwellian distribution of electrons, where f0 () u exp(-f/kTe), for which an electron

temperature, T can be defined, the Einstein relation DT/A = kTe = 2<c>/3 holds. Since

the mean electron energy <,> is not a measureable quantity (it is usually computed by

solving Boltzmann's equation), the characteristic energy is generally the only measure of

3



electron energy that we have. We see that comparison with measured DT/p values gives

us another constraint on the cross sections as does comparison with measured rate

coefficients, ki  fa i()f0(f) dc, and spectral data where they are available.

The relationship between the cross sections and the transport coefficients via the

distribution function f0 (c) is highly nonlinear. We have a mapping

am(() vd (E/N)

D/p(E/N)

{ai(J){ {ki(E/N)}J

and we want to find the reverse mapping given the transport data. It has been claimed in

the literature (see Ref. 5, for example) that the reverse mapping is not unique, but we have

never seen it proven. It seems likely that the more transport data we have available, the

more likely it is that the reverse mapping is going to be unique.
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SECTION III

TECHNIQUES FOR RECOVERING CROSS SECTIONS FROM SWARM DATA

There are numerous teclniques 6-8 that might be used in inverting electron

transport data to obtain a collision cross section. The three classes of methods that we

discuss here are (A) the downhill or creeping simplex algorithm, which is a topological

approach; (B) function minimization by simulated annealing, a statistical approach; and

(C) neural networks, which do not fit into any of the usual categories for numerical

algorithms. The latter are very new and largely unknown in applications to physical

problems. Descriptions of these approaches follow below. Initially we applied all three

methods to a model problem in ore r to develop the algorithms and codes.

Another approach " o solving inverse and so-called "missing information" preblems

is the maximum entropy method. This is a method of statistical inference that provides a

least biased estimate based upon given information. Using the information theoretical

definition of entropy (which it is our desire to maximize) one sets up a likelihood function

that is a linear combination of the entropy function and contraints, which are modified by

Lagrange multipliers. Such a constraint nay be the goodness-of-fit criterion, for example.

One then maximizes the entropy subject to the constraints. This then yields a

transcendental equation that, in principle, can be iterated upon to yield an estimate of the

unknown function. Examples of the use of this approach to astrophysical problems,

intermolecular potentials in solid state physics, and signal analysis can be found in Refs.

[7,9,10]. We believe that the maximum entropy condition is implicit in this problem

through the use of the Boltzmann equation, which is the equation that maps the cross

sections into the transport coefficients. The equilibrium and steady state solutions of the

Boltzmann equation are, of course, maximum entropy solutions as can be seen from the

behavior of the l-function, where dl/dt < 0 by Boltzmann's If-theorem. The entropy (at,

(,quilibriutin, of course) is directly related to the H-function via H = -S/kV and,

consequently, is maximized.
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The two obvious examples to use as models are those of electrons drifting in a gas

having either constant collision frequency or constant cross section. Here the electron

energy distributions are Maxwell-Boltzmann and Druyvesteyn, respectively, with easily

calculable E/N dependent drift velocities. Any method should be able to use the vd(E/N)

curve and the appropriate f0 (c) and recover a, lj or a o respectively for these two

special cases.

We have investigated the capability of these optimization algorithms to reproduce

the constant collision frequency cross section, a = o/V', using the drift velocity, vd(E/N),

and characteristic energies, D/p(E/N), associated with that cross section. The resulting

electron energy distribution function, f0 (c), -;6 , D/jt, and <c> are all analytic functions.

A. THE CREEPING SIMPLEX

This is a very versatile method for optimization problems. In finding the minimum

of a function of n variables, F(xl,...,Xn), we can think of the set {xi} as defining an

n-dimensional surface in a space of n+1 dimensions. n+l points on this surface then

defino what is called a simplex. If one draws a picture of the surface defined by F(x1 ,x2 ),

as shown in Fig. 1, it is easy to see that this simplex is a triangle, i.e., three points

determine the two lines that define a plane in three dimensions. Now, using several

transformation rules this simplex, or n-dimensional plane, can be made to move around on

the surface and, specifically, can be made to follow the contours of the surface moving ever

"downward" toward the lowest point. This algorithm was first published by Nelder and

Mead 12 but Press, et al. 6 give a good description of it.

My imnpleintation of the creeping simplex involves defining the initial simplex by

(:hoosiig n t-I trial cross sections of the form a(()=o/P, where the constant ao is chosen

frolri a liniforn distriblution of random numbers in 10- 10 <Uo<10-1 4 cm2 and the power 1)

is 'hi(se, froiii uniform random numbers in O<p<.l. Using these cross sections the

6
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appropriate f(()'s are computed and, consequently, the set of drift velocities, w(E/N), for a

number of values of E/N. The function to be minimized then is a X2 on the difference

between the "data" vd(E/N) and the n+1 trial w(E/N), that is, E [(v- 2) 2v With

good convergence properties, the simplex reduces nearly to a point on the surface, so that

the final result is the cross section associated with the final simplex. In Fig. 2 we see the

results of using this procedure on the test problem. This calculation, which took about 20

minutes on a 25 MHz 80386 PC, used 5 values of E/N (1-10 Td) and 13 cross section

points running from 0.01 eV in powers of 2. We see that the results look excellent except

at the largest energies, where am(c) is insensitive to the range of E/N used.

Application to Real Gases

We have used the simplex algorithm to recover the momentum transfer cross

sections for He, Ar, and CH 4 from the their E/N dependent transport coefficients. The

results are shown in Figs. 3 through 6.

The He calculations used the drift velocity and characteristic energy measurements

given in the book by Huxley and Crompton. 3 Eleven values each of vd(E/N) and

D/p(E/N) were used with 0.1 Td < E/N < 3 Td. In the calculations on real gases, the

puo vr parameter in the trial cross sections was in range -l<p<+l, rather than in (0,1) as

in the model calculation. The orginal transport data are cited by Huxley and Crompton as

coming from Refs.13 and 14. Shown for comparison is the He momentum transfer cross

section of Crompton, et al. 15 Note that this cross section was derived from different drift

velocity data (at 77 K rather than 300 K) and without use of D/p data, so we expect the

resulting cross section to be somewhat different from that which would be derived from the

data use(l here. We see reasonable agreement except at the extremes in energy. This, as

has been discussed above, is due to the limited range of E/N used. These calculations take

about 2 hours on an 80386 PC. Better accuracy over the energy range would likely be

achieved with a larger number of values of vd(E/N) and D/u(E/N).

8
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A similar calculation performed for Ar is shown in Fig. 4. Twelve values of E/N

were used in the range 0.002 Td < E/N < 0.1 Td, which are quite low E/N values. The 90

K transport data came from Ref. 16 (vd) and Ref. 17 (D/p), as cited by Huxley and

Crompton. Shown for comparison are the momentum transfer cross sections for Ar found

by Frost and Phelps 18 and by Milloy, Crompton, et al.19 Neither of these cross sections

was derived from the transport coefficients used in this calculation, so we expect there to

be differences. This calculation is meant only to indicate the possibilities of what might be

achievable with further development of this approach. Interestingly, we see that the am( )

from the optimization algorithm agrees with Milloy, et al. below the Ramsauer minimum

and with Frost and Phelps above the minimum. At high energy we have the ususal

problem, which would be taken care of by more E/N values over a larger range.

The most sophisticated calculation was on methane, CH4 . Methane has, in addition

to a Ramsauer minimum in am(c), low energy inelastic cross sections, i.e., vibrational

levels with energy losses of 0.162 and 0.361 eV. We used the same approach as described

above with 12 values of E/N in the range from 0.1 to 12 Td and consistent vd(E/N) and

D/p(E/N) data as measured by Haddad. 2 0 The momentum transfer cross section was

computed at 12 energy values and the vibrational cross section at 10. Since this work is

developmental in nature, We used only one vibrational state (0.162 eV) so that ov(( )

approximately represents the sum of the two actual vibrational cross sections. This

approach has been used in other analyses, notably those of Pollock 21 and of Pitchford, et

al. 22 We are still using the two-term expansion of the Boltzmann equation even though it

is known that there is a loss of accuracy for methane and other gases that, in one way or

another, do not totally satisfy the conditions used in the development of this

approximation. The results of using the creeping simplex on CH4 , which required 3 hours

of computational time on the PC, are shown in Figs. 5 and 6 where we see am(() and ov()

respectively along with numerous cross sections derived by other authors from swarm

11
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23-25

data. . The first ohcrvatioi that we make is that there is anything but unanimity iln

what constitutes the "best" or "correct" cross sections. Clearly the creeping simplex

results are as valid as any of the others that we see in the Figures. We see from the plots

of drift velocities and characteristic energies respectively in Figs. 7 and 8 that these cross

sections yield satisfactory transport coefficients. Clearly the next step in this development

would be to extend this algorithm to multiple inelastic process, such as two vibrational

levels in CH 4 or, more ambitiously, H2 with rotational and vibrational levels.

B. SIMULATED ANNEALING

Simulated annealing 6,7,26,27 is a function minimization method that is an

outgrowth of the Metropolis algorithm 28 commonly used for computer simulation of

canonical ensembles in statistical mechanics. One minimizes a quantity E by making

random changes in the configuration of the system and deciding whether or not to accept

the new configurations based on comparison with the Boltzmann probability P(E) =

exp(-E/kT), where T is a control parameter. When applying the method to a

thermodynamic system, say a collection of atoms at temperature T, one displaces an atom

at random (the Monte Carlo move) and computes the total energy E of the system. If it

has decreased, the move is accepted and another MC move is made. If it has increased, the

move is accepted with probability e- AE/kT . This allows the system a means of moving

out of a local minimum if it has settled into one. The annealing part of the method

involves slowly decreasing T as the simulation proceeds. This approach is applicable to

very large systems and has been very successful in providing near optimal solutions to the

so-called "traveling salesman problem."

We designed the following algorithm to perform the Monte Carlo moves appropriate

to this problem. We have values of cross sections, a. = am (j), at some number of values

of energy, (j. In the calculation presented here there are 13 energy points, i.e., <j<13.

15
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object of the algorithm is to vary these in the manner described above in order to minimize

the same 2 function that was used in the creeping simplex method. To perform this

variation a j is chosen using a random number generator and then a is multiplied by some

scale factor. Let F° be the maximum fractional change that we allow the program to make

in a a in a single MC move and let q be a uniform random number in (0,1), then

a+ i [1 + (2. q. F° - F°)] is the formula for obtaining the desired random variation

of aj from iteration to interation. In order to allow a smooth variation of the function

am(f) we devised a "rubber ruler" algorithm by which aj is varied as just described but

smaller variations are made simultaneously in the other cross sections lying nearby in

energy. The complete MC move algorithm is

ori+ 1  : a. 0 {1 + (2 iF °-  F ).e-[(cj-fk)/ (s ]  }
(k k- ork0

where j is chosen as above and cs is a scale energy, which was 0.2 eV is the calculations to

be described.

We have applied this algorithm to the test problem described above with the results

that are shown in Fig. 2. In this calculation the variations in the trial cross section were

made as described above. In addition, the "temperature" kT = 0.005 and the annealing

schedule was such that kT was multiplied by 0.5 after 130 successful MC moves had been

made; this was carried on for 50 iterations. This particular calculation took 25 minutes of

CPU time on a Cray X/MP. Although these results are not as spectacular as those

obtained with the simplex, we believe this method is worth further study. The choice of

the appropriate T and its annealing schedule is very much a matter of trial and error and

experience 27 and this sample calculation is certainly not optimized. In addition, it is easy

to see how to implement this algorithm for any number of elastic and inelastic processes,

and how to use prior information on the uncertainty associated with each cross section in

18



performing the MC variations. Therefore, this method is likely to work better for

complicated problems than is the creeping simplex algorithm, in which it is not clear how

to include the latter kind of constraint.

C. NEURAL NETWORKS

This is a very new area of research. 29- 3 1 Neural networks, which consist of layers

of simulated "neurons" with associated activation functions, transfer functions, and

weighting functions for the "synapse" connections to other neurons, have been

shown 8 '2 9 '3 2' 3 3 to be capable of computing decisions in optimization problems. Such

networks have a "learning" capability in that the weights associated with connections

between pairs of neurons can be modified (strengthened or weakened) in response to the

network's successes and failures so as to optimize in favor of tie network's successful

strategies. This is probably the most novel, but least well deflied, approach to the

physical problem of inverting electron transport data. Aarts and Korst 34 have found that

on some graph problems the neural network approach is from 20 to 400 times faster than

the simulated annealing method described above.

One kind of neural network consists of a network of layers of simulated neurons as

shown in Fig. 9 (taken from Ref. 31) The key elements are an input layer, one or more

"hidden" layers, and an output layer. Each neuron has a transfer function associated with

it that gives an output value that is some non-linear function of the sum of the input

values and each pair of neurons has a weight value associated with it. The concept behind

this kind of network (feed-forward, back-propagation) is that it can "learn" to associate a

set of output patterns with a set of input patterns by adjusting the weights that connect

together the network of non-linear devices. The usual transfer function used in such

networks is the sigmoid T(x)= I/(I +e- x) [there is an equivalent arctan function also]. If

the output of the jth neuron is oj and wij is the weight connecting neurons i and j, then the

19
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output of the ith neuron is:

0i - 1/(1 + e- ijoj).

The network is trained by running a number of cases of (input,output) sets through it and

adjusting the weights to minimize a the sum of the squares of the differences between the

desired result and the computed result. This quadratic function is the so-called energy,

cost, or objective function. The weights are adjusted at random using a steepest descents or

a conjugate gradient algorithm.3 5 After the network is "trained" it can be run on other

input vectors to yield oui)Ut vectors that, hopefully, are good approximations to the correct

output.

Application to the Problem of Obtaining Cross Sections from Swarm Data

In order to explore the feasibility of using neural networks on this problem we have

been working with a commercial neural net simulator called BRAINMAKER. 3 6 This is

one of a number of such programs as can be seen from the list recently compiled by BYTEI

Magazine (see the Appendix of this document, which was taken from Ref. 37). We wrote a

l)rogram to generate cross section sets of the form a(() = o/ P, where o and p are chosen

from uniform random numbers in (10-17,10-14) and (0,1) respectively, and then compute

for a range of EI/N' tne distribution function f(f) and the associated drift velocities, vd, and

characteristic energies, 1)/p. We then set tip a training set for BRAINMAKER that

consisted of the sets {Vd I and {D/ji} for ten values of E/N and the cross section a(() at

nine energies from which the swarm data were computed. The input layer of the network

then consists of 20 neurons, one for each value of vd (E/N) or D/p(E/N). The output layer

comprises nine neurons, one for each cross section point o(ei), i=1 to 9. The network has
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two hidden layers of 25 neurons each. In summary the network is described as follows:

Layer Neurons Weights

1 20 0

2 25 525

3 25 650

4 9 234

The training tolerance was 5 percent meaning that for the network to be acceptable the

cost/energy/objective function of the difference between the { a(()} defined by the values of

the output neurons and the "data" given to the network as part of the training pattern had

to be less than or equal to 0.05.

Once the network was "trained" we gave it another file of sets {Vd} and {D/ps}

corresponding to different sets {a(}i) } computed with random ar and p to see what it

predicted for the cross sections. These results are shown in Fig. 10 for the three best (out

of 11) cases. These illustrate several things. First, the results denoted by the circles are

very good. They all diverge at high energy because the highest E/N that I used (3.0 Td)

was too small for vd and D/p to be adequately sensitive to the high energy part of the cross

section. In addition, we have observed that the results for large cross sections are generally

better than the results for small cross sections. We think that this is due to a dynamic

range problem with BRAINMAKER that we attribute to its being single precision; it was

not really designed for scientific number crunching. This problem could, perhaps, be

gotten around by using iog[a()/ao] where ao is a scale cross section equal to, say, 1 R 2
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Application to a Real Gas

In order to test the feasibility of using this kind of neural network to find the

pattern in the mapping between {vd(E/N), D/p(E/N), etc.) and a()} we trained

BRAINMAKER on 25 sets of {vd(E/N), D/p(E/N)} data for cross sections of the form

= ao P where -1 5 p < +1. That is, we have some cross sections that increase with

energy and some that decrease with energy. We then constructed an input set for Xe with

{Vd(E/N)} from Hunter, et al. 3 8 and {D/pu(E/N)} from Koizumi, et al. 3 9 Unfortunately

neither paper presented both drift velocity aud characteristic energy data. This particular

network consisted of three layers:

Layer Neurons Weights

1 18 0

2 20 380

3 9 189

Fig. 11 displays, so called, Hinton 40 diagrams of the weights of the connections between

the neurons of the input layer and the hidden layer and the neurons of the hidden layer and

the output layer.

The cross section that the neural network returned in the output layer for Xe in the

energy range around the Ramsauer minimum is shown in Fig. 12 along with the m(f)

from lHmter, et al, 3 8 Koizui, et al, 3 9 and Frost and Phelps. 18 We see that the neural

network gives a res)ectable estimate of the cross section even though the number of E/N

values is small and the energy grid is very coarse.
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A Different Neural Network Approach

Jeffrey and Rosner 8,33 have developed a neural network approach to finding the

solution to an integral equation that bears further study for application to this problem.

This network is a so-called Hopfield 32,34,40-42 or recurrent network. It consists of only

one layer, as shown in Fig. 13 (taken from the BRAINMAKER documentation 36), and is

not trained as is the network that we have described above. Rather, it is essentially an

iteration algorithm where the output is fed back to modify the input. The mathematical

description is developed as follows. We want the solution q to the integral equation g(y) =

f k(x,y)q(x)dx, which we write in discrete form as gi = -kijqj" If we write the

energy/cost/objective function as a goodness-of-fit function

H(-I) = 1/2 S (gd- gi) 2

and define Ij k gd and Ti= - k ik then

H(4) = -1/2SZj T. q - EIjqj + 1/2S (gid) 2

This now is in the standard form investigated by Hopfield where -=(ql,...,qN) is regarded

as the ouput vector of a network of N neurons. By considering dH/dt=-V(8H/oqi)(dqi/dt)

Jeffrey and Rosner then show that the update equation for the qi on the (n+1) th iteration

is

r(n+1) = n)+ +n)+

This gets more complicated for more complicated energy functions. In even the most
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simple form of our problem (no inelastic processes), the kernel k(x,y) is also a function of

q(x). That is,

Vd(E/N) J{dfo[,am(),E/N1/dNaom1 (c)cdc

This does not prevent us from trying this kind of iteration, however. One aspect of this

iterative approach that one must watch out for is chaos, as it is known that recurrent

networks can be chaotic. 4 3
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SECTION IV

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

We have explored three optimization techniques for treating the inverse problem of

obtaining electron collision cross sections from electron transport data. These methods

were (a) the downhill or creeping simplex; (b) simulated annealing; and (c) neural

networks. We devoted the greatest amount of effort to methods (a) and (c). The simplex

method was straightforward to implement and, as we saw above, demonstrated a capability

for making headway on this problem. Simulated annealing is capable of solving any

minimization problem that the simplex can solve and probably much more. It, however,

requires substantial further development and may require computational resources beyond

what a PC can currently provide. We devoted much effort to investigating the neural

network approach because it is very new and has not yet had much application to the

problems of applied physics. That approach also has demonstrated some capability in

addressing the problem at hand.

The paths for further development of methods (a) and (b) are apparent and have

been discussed above. With regard to (a), another possibilty for development is to

implement the algorithm developed by N. Karmarkar 44,45 of AT&T Bell Laboratories in

1984. It has been claimed 46 that this algorithm is much faster than the simplex. A

perusal of Science Citation Index, however, shows that Karmarkar's algorithm has not yet

made it into the physics literature.

We believc that the neural network approach too is worthy of further exploration.

The limits of BRAINMAKER to this application have, however, about been exhausted.

The next step would be to write a network for this problem with larger numbers of

neurons; double precision arithmetic; a capability for having different transfer functions for

different layers; allowing different convergence criteria for different energy ranges; and,

perhaps, using the Boltzmann training algorithm 31,34,42 (an application of simulated

annealing to adjustment of the weights of the connections in the network); i.e., more
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flexibility in general. It would be interesting investigate how such a network would

perform when trained on a completely artificial data set (probably using more sophisticated

functions for the training cross sections than we have used here) as compared to training by

feeding it a large set of data on real atoms and molecules. Ultimately we may find that a

neural network is good means of getting a rough estimate of a cross section 0() that can

then be refined using another numerical optimization algorithm. The conventional wisdom

has been that neural networks are useful for only very rough solutions and not for accurate

scientific calculations but some authors, such as Lapedes and Farber 35 refute that point of

view. As this area of research is very much in its infancy, we can expect many new

developments in the application and understanding of neural networks in the future.
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APPENDIX

NEURAL NETWORKS: THEORY AND PRACTICE (BYTE Magazine, August 1989)
For most of their existence, neural networkrs and neural-net wart sinulations have been solely objects of university-based research. In the lastw yea"s, howver. researchers and others have founded companies dedicated to producing commercial products based on neural-ne work
echnology. To reflect both the academic and commercial aspects of the technology, this resource guide consists of two parts. The In Theory
section lists books and articles you can read to learn more about neural networks. The In Practice section lisis some of the available neural-
network hardware and software products, lisied alphabetically by company name.
IN THEORI Lang, K. J., and M. J. Witbrock. Waibel, A., H. Sawai, and K. Shikano.

"Learning to Tell Two Spirals Apart." "Modularity and Scaling for Phonemic
Anderson. J. A.. M. T. Gately. P. A. In Proceedings of the 1988 Connection- Neural Networks." In IEEE Transac-

Penz, and D. R. Collins. "Radar Sig- ist Models Summer School, D. S. Tour- tions on Acoustics Speech and Signal
nal Categorization Using a Neural Net- etzky, G. E. Hinton, and T. J. Sej- Processing (in press).
work." Neural Networks. I Supp. I, nowski, ads. San Mateo, CA: Morgan Wasserman. P. Neural Computing,
1988, Kaufmann Publishers, 1988. Theory and Practice. New York, NY:

Anderson. J. A.. and E. Rosenfeld. eds. UIppmann, R. "An Introduction to Corn- Van Nostrand Reinhold, 1989.
Neurocomputing: Foundations of Re- puting with Neural Nets." IEEE ASSP
search. Cambridge. MA: MIT Fr-, Magazine, vol. 4, April 1987.
1988. McClelland, J. L., and D. E. Rumelhart, IN PH -%CTICE

Anderson, J. A.. J. W. Silverstein, S. A. eds. Parallel Distributed Processing: The Brain Simulator ............... $99
Ritz, and R. S. Jones. "Distinctive Explorations in the Microsructure of Runs under MS-DOS
Features. Categorical Perception, and Cognition. vols. I and 2. Cambridge, Tutorial software for neural circuit
Probability Learning: Some Applica- MA: MIT Press. 1986. designtions of a Neural Model." Psychologi- dsgctl Review. vol. 4 1977. McClelland, J. L., and D. E. Rumelhart. Abbot, Foster & Hauserman

Explorations in Parallel Distributed 44 Montgomery. Fifth Floor
Brugge, J. F.. and R. A. Reale. "Audi- Processing: A Handbook of Models, San Francisco, CA 94014

tory Cortex." In A. Peters and E. G. Programs and Exercises. Cambridge, (800) 562-0025
Jones. Cerebral Cortex. Vol. 4. Associ- MA: MIT Press, 1988. (415) 955-2711
ation and Auditory Cortices. New York, Inquiry 1181.NY: Plenum Press, 1085. McCulloch, W. S. Embodiments ofMind.Cambridge, MA: MIT Press, 1988. N-NET

Davis. P. I., and J. A. Anderson. "Non- MS-DOS version ................ $895
analytic Aspects of Mathematics and Mead, C. Analog VLSI and Neural Sys- VAX/VMS version .... starting at S2995
Their Implication for Research and tems. Reading, MA: Addison-Wesley, Integrated neural-network development
Education." SIAM Review, vol. 2j, 1988. system; uses functional link net
1979. Minsky, M., and S. Papert. Perceptrons. architecture

Hadamard, J. Psychology of Invention in Cambridge. MA: MIT Press, 1969 and Al Ware, Inc.

the Mathematical Field. New York, 1988. 11000 Cedar Ave., Suite 212
Cleveland. OH 44106NY: Dover, 1945. O'Shaughnessy, D. Speech Communica- (216)421-2380

Hinton. G. E.. and J. A. Anderson, eds. tions. Reading, MA: Addison-Wesley. Inquiry 1182.
Parallel Models of Associative Memory. 1986. BrainMaker .............. $99.95
rev. ed. Hillsdale. NJ: Lawrence Erl- Pomerleau, D. A. "ALVINN: An Auton- Runs under MS-DOS
baum Associates. 1989. omous Land Vehicle in a Neural Net- Neural-network simulation software;

Jones, W P., and J. Hoskins. "Back- work." In Advances in Neural lnforma- supports five types of nodes and can
Propagation." BYTE, October 1987. tion Processing Systems I, D. S. process up 500,.O connections perTouretzky. ed. San Mateo, CA: Morgan second

Josin. G. "Neural Network Heuristics." Kaufmann Publishers. 1989. California Scientific SoftwareBYTE. October 1987. Rabiner, L. R., and R. W. Schafer. Digi- 160 East Montecito. Suite E

Knapp, A., and J. A. Anderson. "A tal Processing of Speech Signals. Engle- Sierra Madre, CA 91204
Theory of Categorization Based on Dis- wood Cliffs, NJ: Prentice-Hall, 1978. (818) 355-1094
tributed Memory Storage." Journal of1183
Experimental Psychology: Joarning, Thorpe, C., M. Herbert, T. Kanade, S.
Memory and Cognition, vol. 9. 1984. Shafer. and the members of the Strate- CogPitron

gic Computing Vision Lab. "Vision and MS-DOS Windows and MacI Knudsen. E. 1., S. du Lac, and S. D. Es- Navigation for the Carnegie-Mellon versions ............................... $600
terly. "Computational Maps in the NAVLAB." Annual Review of Coin- INMOS transputer version ........ $1800
Brain." Annual Review of Neurosci- puter Science, Voluwe II, Joseph Traub, Neural-networklparallel-processing

L ence. Volume 10. Palo Alto. CA: Annu- ed. Palo Alto, CA: Annual Reviews, protoryping and delivery system
al Reviews, 1987. Inc., 1987. Cognitive Software, Inc.

703 East 30th St.Kahonen, T. Associative Memory. Berlin: Viscuso, S. R., J. A. Anderson, and Indianapolis, IN 46205
Springer-Verlag, 1977. K. T. Spoehr. "Representing Simple (317) 924-9988

Kahonen, T. Self-Organization andAsso- Arithmetic in Neural Networks." In Inquiry 1184.
ciativ Memory. Berlin: Springer-Ver- Advanced Cognitive Science: Theory
lag. 1987. and Applications. G. Tiberghien, ed. Connections ......................... $87.95

London: Hwoods. 1989. Runs under MS-DOS
Kosko. B. "Constructing an Associative A traveling-saleman demo modeledMemory." BYTE, September 1987. Waibel, A. "Modular Construction of after Hopfield networksTime Delay Neural Networks for

Speech Recolnition." Neural Cwpu-
euon vol. I, March 1989
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NetWurk ............................ $79.95 NSW ............................... from $495 lnelllgent Pattern RecognitionAM under MS-DOS uns on lBM PC AT and P$W Model 50 Chips ........................ $500EJemenary introduction to neural Single-unit RCE network software Stores a 1( 00-by-64 matrix of weightsnetworks Nestor, Inc. and multiplies it with an input vectorDAIR Computer Systems I Richmond Sq. Oxford Computer340 Kenneth Dr. Providence, RI 02906 39 Old Good Hill Rd.
Palo Alto, CA 94303 (401) 331-9640 Oxford, CT 06483(415) 494-7081 Inquiry 1189. (203) 881-0891
Inquiry 115. Awarenes .............................. S275 Inquiry 1194.
Sa" Tat Retrieval System Runs under MS-DOS ANSim 2.1 .......................... $495Savvy Signal Recgnitorn System Introduction to four tpes of neural- Runs under MS-DOSSay Vision Recognition System network paradigms 13 neural-network models £(Call for pricing) Genesis ................................ $1095 ANSkit .................................. $950Run under VAX/VMS. MS-DOS, Runs under MS-DOS Runs under MS-DOSand Unix Neural-network development Neural-network development systemLibrarw of C suboutines that use environment ANSpec ..... ................. $2995neural technology to solve real-world Neural Systems Runs under MS-DOSproblems 2827 West 43rd Ave. Neural-network specification languageExcalibur Technologies Vancouver, BC Canada V6N 3H9 Delta Floating Point
2300 Buena Vista SE (604) 263-3667 Processor ........................... 24.950Albuquerque, NM 87106 Inquiry 1190. Runs on IBM PC. AT. PS2s, and
(505) '64-0081 .3orks Explome........ Sui86i"InquiryRuns under MS-DOS Neural-network accelerator boards
ANZA ........................... from $7000 An introduction and tutorial on neural Sigma Neurocomputer
AT-compatible neural-network networks Wordstalots ................ from 31.500
coprocesson; includes software and Neural[Works Profesional 11 80386-basedss Nems eth Delta
progrm um ng interface MS-DOS and Macintosh Pro , ANS,
ANZA Plus ................... from $12,500 versions .............................. $1495 Macro, and ANSpecAT-compatible neural-nerwork Sun-3, Sun-4, and Sun386i 6IC
coprocemrs versions ......................... 10260 Campus p oint Dr.ANZA Plus/VME ................. S24,950 NeXT and INMOS transputer Mail tio 71Neural-network coprocessor for Sun versions ................... call for pricing Sn Diego, CA 92121workstations Neural-network development system (619) 546.6290
AXON .................................. $1950 NeuraIWo-ks Designer Pack ...... $1995 Inquiry 1195.A neural-network description language MS-DOS and Sun versions DENDROS-I ............................. $35Neural Network Developmnt Links Professional I! networks wih C Neural-network chip that produces theToolkit ................................. $3950 programs dot product ofthe viputs and theFor ANZA Plus and ANZA Plus/VME NeuralWare, Inc. connection weights of 22 symapwsSystems 103 Buckskin Court DENDROS-1 Evaluation Board ... $695Poris Cprograms into ANZA Plus and Sewickley, PA 15143 Uses eight DENDROS-I chips to createANZA Plus/VMEformau; includes (412) 741-5959 a hardware-based neural networkAXON Inquiry 1191. Syrnonics Systems, Inc.ExploreNet 20790 Northwest Quail Hollow Dr.

MS-DOS version ............ 995 MacBrain ............................. Portland, OR 97229Sun version .......................... $3950 Runis on Macimosh (503) 293-8167Stand-alone neural-network soft wre Lets you pI'otop and delivr neural Inquiry 1196.HNC. Inc. network applications
5501 Oberlin Dr. HyperBrain TRW Mark V Neural Processor
San Diego. CA 92121 (Comes with MacBrain) Write for pricing information(619) 546-8877 Toolkit allows you to build neural- Runs on VAXNMSInquiry 1187. network applications within HyperCard MC68020-ba parallellrocessingNeunx, Inc. system includes tools for neiual-nerwork
MD/210 Fuzzy Set I Kendall Sq., Suite 2200 applicationsComparator .............................. $38 Cambridge, MA 02139 TRWHardware implementation of Hopfield (617) 577-1202 Military Electronics & Avionics Div.
M10001 Inquiry 1192. One Rancho CarnelMicro DevicesSaDig.C928

5695B Beggs Rd. Owl 1, 11, 111 ................. from San Diego, CA 92128Orlando. FL 32810 Librar s ofmodules for IBM and (619) 592-3482
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